Autophagy in endometriosis: friend or foe?

Lei Zhan¹, Jun Li² and Bing Wei¹*

¹Department of gynecology and obstetrics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei 230601, China

² School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Meishan Road No. 81, 230032 Hefei, China.

*Correspondence to: Bing Wei;
E-mail address: m1351565@163.com

Abstract
Endometriosis is a chronic, estrogen-dependent disease and characterized by the implantation of endometrial glands and stroma deep and haphazardly into the outside the uterine cavity. It affects an estimated 10% of the female population of reproductive age and results in obvious reduction in health-related quality of life. Unfortunately, there is no a consistent theory for the etiology of endometriosis. Furthermore, the endometriosis is hard to diagnose in early stage and the treatment methods are limited. Importantly, emerging evidence has investigated that there is a close relationship between endometriosis and autophagy. However, autophagy is a friend or foe in endometriosis is puzzling, the precise mechanism underlying autophagy in endometriosis has not been fully elucidated yet. Here, we provide an integrated view on the acquired findings of the connections between endometriosis and autophagy. We also discuss which may contribute to the abnormal level of autophagy in endometriosis.

Abbreviations: 3-MA, 3-methyladenine; ERK, extracellular signal-regulated kinase; MIS, Mullerian inhibiting substance; mTOR, Mammalian target of rapamycin; NF-κB, nuclear factor-k-gene binding κ; OH-1, heme oxygenase-1; TRPV, transient receptor potential vanilloid type
KEYWORDS: Autophagy; endometriosis; friend; foe; mechanism

Introduction

Endometriosis is defined as the presence of functional uterine glands and stroma outside the uterine cavity including ovaries and pelvic peritoneum, rectovaginal septum. Endometriosis is an estrogen-dependent disorder of the women reproductive tract and the third leading cause of gynecologic hospitalization in the USA [1,2]. It is indicated that endometriosis is one of the most common causes of chronic pelvic pain, infertility, dysmenorrhea, dyspareunia, dysuria and dyschezia, and affects an estimated 10% of the female population of reproductive age and 20-50% of infertile women [3,4,5]. There are several theories have been proposed underlying the pathogenesis of endometriosis. Among the various views, Sampson’s theory of retrograde menstruation is the most widely accepted because it was observed that retrograde menstruation occurs in up to 90% of all women [6,7]. Sampson’s theory described that the menstrual debris travels not only anterogradely to the vagina, but also through the fallopian tube into the peritoneal cavity in a retrograde manner and implants in the dependent areas of peritoneum during menstruation [6,7]. Actually, as studies continued, it was acceptable that the pathogenesis of endometriosis is polyfactorial which involved in reflux menstruation, hormonally mediated proliferation and apoptosis [8,9,10], hematologic spread, inflammation, immune response and genetic factors [2].

Autophagy is a pathway by which cytoplasmic components, including intracellular soluble macromolecules, organelles and microorganisms, is delivered to lysosomes for degradation [11]. Studies supported that autophagy exists at basal level in all cell types. However, defects in autophagy underlie the pathogenesis of many diseases. It is worth mentioning in advance that autophagy is proved to act as a double-edged sword in multiple diseases which depend on different context [12]. In these years, accumulating researches present potential evidence that the progression of
endometriosis was crucially implicated in autophagy, and seemingly opposing concepts concerning the role of autophagy in endometriosis have been proposed, with evidence that autophagy was up or down-regulated in endometriosis [5,13]. So autophagy in endometriosis: friend or foe? In this mini review, we aim to explore and summarize the latent mechanism of autophagy in endometriosis from the recent studies and discuss which may contribute to the abnormal level of autophagy in endometriosis.

Autophagy as friend in endometriosis

The relevance of autophagy to endometriosis was observed as early as 1986 by Cornillie et al. [14], they found the lysosomal autophagy was accelerated in 11 patients after treatment with antiprogestone in 20 infertile patients who with endometriotic implants [14]. Several years before, researches revealed an apparent connection of endometriosis with Beclin-1 [15,16]. It was indicated that the level of Beclin-1 mRNA and protein were prominently lower in cultured stromal cells of eutopic endometrial and endometrial tissues of endometriosis compared to endometriosis-free patients. Beclin-1 protein expression was negatively correlated with serum CA-125 level and pelvic pain, suggesting low level of Beclin-1 might contribute to the development of endometriosis [15,16]. But there are no distinct statistical differences of Beclin-1 expression between eutopic and ectopic endometriotic in endometriosis [16]. Choi et al. suggested that the attenuation of autophagy in the secretory phase of endometriotic tissues was caused by the increased mTOR activity. Treatment with the mTOR inhibitor rapamycin induced LC3-II expression, while the effect of rapamycin was reversed by the addition of autophagy inhibitor 3-methyladenine (3-MA) [17]. They also defined that dienogest could enhance autophagy induction and inhibit AKT, extracellular signal-regulated kinase (ERK), mammalian target of rapamycin (mTOR) signaling in estrogen-treated endometriotic stromal cells. Incubation of estrogen-treated endometriotic stromal cells with AKT and ERK1/2 inhibitors increased LC3-II and cleaved caspase-3 expression.
In addition, endometriotic stromal cells treated with dienogest and estrogen shown significantly increased expression of LC3-II and cleaved caspase-3 compared with endometriotic stromal cells cultured in estrogen alone, and this dienogest-mediated increase in LC3-II and cleaved caspase-3 expression was statistically decreased by the addition of the autophagy inhibitor 3-MA. These findings indicated that dienogest treatment in estrogen-treated endometriotic cells could induce autophagy by suppressing AKT/mTOR and ERK/mTOR activity, further promote apoptosis in endometriosis [17]. Notably, both of the two studies recognized that treatment with estrogen and progesterone failed to change LC3-II expression in endometriotic cell [5,17]. Another possible mechanism of autophagy down-regulated in the pathogenesis of endometriosis was delineated by Mei et al. [18] Firstly, they validated the ERα and p62 were significantly up-regulated, and LC3-II, Beclin-1 and PR were down-regulated in eutopic and ectopic secretory phase endometrial stromal cells compared with normal secretory phase endometrial stromal cells. In consistent with Choi et al. results [5], Mei and colleagues found the level of autophagy was not changed during menstrual cycle in ectopic endometrium from endometriosis patients [18]. But inconsistent with Ren et al. results [16], Mei et al. investigated the level of Beclin-1 was lower in ectopic secretory phase endometrial stromal cells than in eutopic secretory phase endometrial stromal cells [18]. They also implied that the suppression of autophagy caused by estrogen is dependent on CXCL12-CXCR4 interaction, and CXCL12 inhibited the autophagy of secretory phase endometrial stromal cells was via activating the nuclear factor-k-gene binding (NF-κB) signaling pathway [18]. Later on, these authors further suggested that down-regulation of autophagy in endometriosis may promote the reactivity of endometrial stromal cells to the IL-15, which could promote growth and invasion of endometrial stromal cells [19]. In an experiment in vitro by Borahay et al. suggested that Mullerian inhibiting substance (MIS) promoting autophagy as well as apoptosis in ectopic endometrial cell lines [20].

Autophagy as foe in endometriosis
Paradoxically, in another study lately, Giulia and co-workers defined autophagy was up-regulated (increase of lipidated LC3-II protein levels and LC3-II/LC3-I ratio, decrease of p62 expression, induction of LC3B, ATG14, beclin-1, ATG7 genes) in ovarian endometriosis compared with eutopic endometria of affected or healthy women [13]. They delineated two mechanisms which can be responsible for autophagy stimulation in ovarian endometriosis, one is the decreased susceptibility to p53 protein, which in turn is controlled by autophagy, the other one is the increased expression of oxygenase-1 (OH-1) protein, which exhibited persistent oxidative stress and could favor autophagy stimulation in endometriotic cells [13]. It has been clearly identified that hypoxia acted as a promoter in the development in endometriosis [21,22]. A *in vitro* study showed a novel mechanism underlying up-regulation of autophagy in endometriosis, they suggested that hypoxia responsive miR-210 over-expression contributed to high level of autophagy in ovarian endometriotic cell line CRL-7566 by inhibiting Bcl-2 expression [23]. In line therewith, a recent study by Liu et al. suggested that HIF-1α promoted human endometrial stromal cells (HESCs) invasion and metastasis by upregulating autophagy, inhibiting autophagy with specific inhibitors with 3-MA and CQ and Beclin1 siRNA attenuated hypoxia triggered migration and invasion of HESCs [24]. Most important, Nanjundan et al. noted that the autophagic flux inhibitor hydroxychloroquine (HCQ) could reduce the *in vitro* survival capacity of human endometriotic, decrease lesion numbers, and disrupt lesion histopathology in a mouse model of endometriosis, indicating that inhibition of autophagy could be potential therapeutic strategy approach for endometriosis [25].

Which contributes to the abnormal level of autophagy in endometriosis?

Now we know that the abnormal level of autophagy in endometriosis is controversial, the down-regulation of autophagy in endometriosis is estrogen-dependent [26]. Inflammation also causes autophagy down-regulated in endometriosis [18],[19]. Persistent oxidative stress experienced, decreased susceptibility to p53 and hypoxia
contribute to autophagy increasing in endometriosis [13]. Even though, there are a multitude of potential factors which may lead to abnormal regulation of autophagy in endometriosis. For example, angiogenesis were inevitable course in the development of endometriosis [27,28]. Angiogenesis is known as important regulator to autophagy in a plethora of diseases [29,30]. But whether and how angiogenesis cause the changes of autophagy in endometriosis remain unclear. In addition, ions channel is recognized to exert crucial roles in endometriosis. For example, transient receptor potential vanilloid type 1 (TRPV1)-mediated Ca^{2+} influx is investigated to be association with chronic pelvic pain in the peritoneal endometriosis foci of women [31,32]. Interestingly, it is clearly that Ca^{2+} signals play a major role in regulating autophagy [33,34,35]. Also, our study indicates that TRPV4, which is well known as a highly Ca^{2+}-permeable non-selective cation channel, is essential for autophagy induction [36]. It was well accepted that iron overload was found in endometriosis and played a key function in endometriosis pathogenesis [37,38]. A recent study prompts that iron was rich expressed in the cyst fluid of endometriosis-associated ovarian cancers, and iron modulate cell death in a Ras- and MAPK-dependent mitochondrial damage in ovarian cancer cells with increases in LC3-II levels [39,40]. But whether iron plays a function in autophagy in endometriosis need further determined.

Conclusion and perspectives

From all these studies, it is clear that there is an intimate relationship between autophagy and endometriosis (Figure 1). But autophagy in endometriosis: friend or foe? One the one hand, researches observe a down-regulation of autophagy in endometriosis. The related mechanism is implicated in the inhibition of mTOR by PI3K/AKT signaling pathway. Furthermore, the suppression of autophagy by CXCL12-dependent NF-κB pathway also contributes to endometriosis. In addition, the drugs use for endometriosis treatment is involved in the enhancing of autophagy. One the other hand, up-regulation of autophagy in endometriosis also is observed by
studies. Hypoxia, decreased susceptibility to p53 and high expression of OH-1 contribute to the autophagy up-regulation. Besides, angiogenesis, ions channel, and iron may exert functions in autophagy in endometriosis. It is worthy mentioned that autophagy seems unchanged during menstrual cycle in endometriosis. Nevertheless, autophagy is a friend or foe in endometriosis is puzzling. In view of the results of these studies included only a handful of samples, further studies are required to investigate the exact role of autophagy in endometriosis, especially the in vivo studies and more autophagy-related protein should be detected. Moreover, using autophagy inhibitor will be contributed to confirm the exact role of autophagy in endometriosis.

Acknowledgements
The work was supported by the National Science Foundation of China (Nos. 81273526, 81473268) and Natural Science Foundation of Colleges and Universities (Nos. KJ2017A197)

Disclosure statement
The authors report no conflicts of interests

References
[6] J.A. Sampson, Metastatic or Embolic Endometriosis, due to the Menstrual Dissemination of
Endometrial Tissue into the Venous Circulation, Am J Pathol 3 (1927) 93-110 143.

Figure legends

Fig. 1 Mechanism underlying autophagy in endometriosis. a: Autophagy is up-regulated in endometriosis (increase of lipidated LC3-II, LC3-II/LC3-I ratio, ATG14, Beclin-1, ATG7 genes expression, decrease of p62). p53 deletion in endometriosis contributes to autophagy up-regulation. Oxidative stress-mediated OH-1 over-expression and hypoxia responsive miR-210 over-expression contribute to high level of autophagy. b: Down-regulation of autophagy in endometriosis is estrogen-dependent (down-regulation of LC3-II and Beclin-1). Activation of PI3K/AKT/mTOR and ERK/mTOR caused autophagy down-regulation. CXCL12/CXCR4-mediated NF-κB over-expression contributes to low level of autophagy in endometriosis. c: Whether and how angiogenesis, Ca$^{2+}$ signals, and iron cause the abnormal levels of autophagy in endometriosis remain unclear.
a

Angiogenesis, Ca^{2+} signals, iron

Hypoxia

miR-210

Bel-2

Oxidative stress

p53

OH-1

b

Estrogen

PI3K/AKT/mTOR, ERK/mTOR

CXCL12/CXCR4

NF-κB

Endothelial growth factor (EGF)

IL-15

c

Promoting endometrial stromal cells growth and invasion

Down-regulation of LC3-II and Beclin-1, low level of Beclin-1 contributes to serum CA-125 expression and pelvic pain

Increase of lipitated LC3-II, LC3-II/LC3-I ratio, ATG14, Beclin-1, ATG7 genes expression, decrease of p62

Autophagy

Endometriosis
Autophagy was crucially connective with endometriosis;

The role of autophagy in endometriosis is controversial;

Autophagy is a friend in endometriosis;

Autophagy is a foe in endometriosis