Micro-RNA profile and proteins in peritoneal fluid from women with endometriosis: their relationship with sterility

Josep Mari-Alexandre, B.Sc.,a Moisés Barceló-Molina, B.Sc.,a Elisa Belmonte-López, B.Sc.,a Javier García-Oms, M.D., Ph.D.,b Amparo Estellés, M.D., Ph.D.,a and Aitana Braza-Boïls, Ph.D.,a and Juan Gilabert-Estelles, M.D., Ph.D.b,c

a Cardiopatías Familiares, Muerte Súbita y Mecanismos de Enfermedad (CaFaMuSMe) Unit, Health Research Institute La Fe, University Hospital La Fe, Valencia, Spain; b Endoscopy and Gynecologic Oncology Unit, Hospital General Universitario, Valencia, Spain; and c Department of Pediatrics, Obstetrics, and Gynecology, University of Valencia, Valencia, Spain

Objective: To define the microRNA (miRNA) profile and its relationship with cytokines content in peritoneal fluid (PF) from endometriosis patients.

Design: Case-control study.

Setting: University hospital, research institute.

Patient(s): One hundred twenty-six women with endometriosis (EPF) and 45 control women (CPF).

Main Outcomes Measure(s): MiRNA arrays were prepared from six EPF and six CPF. Quantitative reverse transcription–polymerase chain reaction validation of nine selected miRNAs (miR-29c-3p, -106b-3p, -130a-3p, -150-5p, -185-5p, -451a, -486-5p, and -1343-5p) was performed. Vascular endothelial growth factor-A (VEGF-A), thrombospondin-1 (TSP-1), urokinase plasminogen activator (uPA), plasminogen activator inhibitor-1 (PAI-1), matrix metalloproteinase-3 (MMP3), tissue inhibitor of metalloproteinases type 1 (TIMP-1), interleukin (IL)-6, IL-8, IL-17A, macrophage inflammatory protein 1β (MIP1β), platelet-derived growth factor α-polypeptide A, and regulated on activation, normal T cell expressed and secreted (RANTES) were quantified by ELISA and MILLIPLEX.

Result(s): MiRNA arrays showed 126 miRNAs differentially expressed (fold change ±1.2) (78 down-regulated, 48 up-regulated) in EPF. Validation showed higher levels of miR-106b-3p, -451a, -486-5p, IL-6, IL-8, uPA, and PAI-1 in EPF. In menstrual phase, EPF presented up-regulation of miR-106b-3p, -130a-3p, -150-5p, -185-5p, -451a, -486-5p, VEGF-A, IL-8, MIF 1β, uPA, and PAI-1 compared with other phases; however, CPF did not. MiRNA-486-5p was up-regulated in sterile EPF compared with sterile controls, and VEGF-A, IL-8, and TIMP-1 were increased in sterile and fertile EPF compared with fertile CPF.

Conclusion(s): MiRNAs seem to be involved in the peritoneal alterations in endometriosis, suggesting new mechanisms by which ectopic lesions could implant in endometriosis patients; and to serve as biomarkers for fertility outcome prediction. (Fertil Steril® 2017;■:■–■. ©2017 by American Society for Reproductive Medicine.)

Key Words: Angiogenesis, endometriosis, inflammation, microRNA, peritoneal fluid

Discuss: You can discuss this article with its authors and other readers at https://www.fertstertdialog.com/users/16110-fertility-and-sterility/posts/24936-25220

Received October 27, 2017; revised and accepted November 28, 2017.

J.M.-A. reports grants from Fundación Española de Trombosis y Hemostasia, during the conduct of the study; A.B.-B. reports grants from Roche Pharma Spain, during the conduct of the study. J.G.-E. reports grants from Instituto de Salud Carlos III-Fondos FEDER, during the conduct of the study. M.B.-M. has nothing to disclose. E.B.-L. has nothing to disclose. J.G.-O. has nothing to disclose. A.E.-O. has nothing to disclose.

This work has been supported by “Instituto de Salud Carlos III” and Fondo Europeo de Desarrollo Regional (FEDER) “Unión europea, Una manera de hacer Europa” (PI14/01309, P117/01945); J.M.-A. is supported by a Fundación Española de Trombosis y Hemostasia (FETH)-2016 Grant and A.B.-B. by Roche Farma España “Stop Brain Drain”-IIS La Fe (2017/0055). J.M.-A. and M.B.-M should be considered similar in author order.

Reprint requests: Aitana Braza-Boïls, Ph.D., University Hospital La Fe, Health Research Institute La Fe, Av. Fernando Abril Martorell 106, Valencia 46026, Spain (E-mail: aitana_braza@iislafe.es).

Fertility and Sterility® Vol. ■, No. ■, ■ 2018 0015-0282/$36.00
Copyright ©2017 American Society for Reproductive Medicine, Published by Elsevier Inc.
https://doi.org/10.1016/j.fertnstert.2017.11.036
eliminate ectopic lesions but implies invasive procedures (1–3). Endometriosis is still one of the most incapacitating
diseases for women owing to the classic symptoms
(dysmenorrhea, dyspareunia, dyschezia, dysuria) and is one
of the most important etiologies of sterility and poor results
of assisted reproductive techniques. Consequences of this
disease deeply affect women’s quality of life and imply an
increasing economic and social burden. Simoens et al. (4)
calculated the costs related to endometriosis care by means
of a prospective, multicenter, questionnaire-based survey in
ambulatory care in 12 centers in 10 countries enrolling 909
women, and they concluded that the average annual cost
per woman was €9,579. This amount increased in parallel
with severity of endometriosis and years of delayed diagnosis.

Despite its high incidence, prevalence, and its incapacitating
symptoms, the etiopathogenic mechanisms of this benign
gynecologic disease remain under study. Several theories have
attempted to explain the biological events that could explain
the presence of endometrial-like stroma and glands in the
peritoneal cavity (1). Among them, the retrograde menstrua-
tion theory, described by Sampson in 1927 (5), is by far the
most accepted proposal. According to this, in 90% of women
during their menses (6), endometrial fragments migrate
through the fallopian tubes and reach the peritoneum.
Whereas women without endometriosis eliminate by physio-
logic mechanisms, patients with endometriosis are incapable
of eliminating these fragments, which are able to implant,
survive, and proliferate at different locations (3, 5, 6).
Because of this, studying the peritoneal microenvironment
of women with endometriosis becomes essential, to reveal
the biological alterations responsible for the proliferation
of endometriotic implants characteristic of patients with
endometriosis.

Our research group has reported the regulatory potential
of peritoneal fluid (PF) in patients with endometriosis (7–9).
In these studies we described, for the first time, the
alteration of the angiogenic state of stromal cells after
being treated with endometriotic peritoneal fluid (EPF),
enhancing the expression of the main angiogenic factors (7,
8) as well as the expression of microRNA (miRNA)
regulators of angiogenesis (8, 9). This was performed by
means of an in vitro model of endometriosis in which
primary stromal cells from control women and patients
were exposed to PF from controls (CPF) and patients (EPF).

MiRNAs are small noncoding RNAs (21–23 nt) able to
inhibit the translation of their target genes by binding to
their messenger RNA 3’ untranslated region (3, 10).
This posttranscriptional regulation occurs in both physiologic
and pathologic conditions, including endometriosis (3, 11–15).
The proinflammatory state of EPF is well known, charac-
terized by an enhanced number of peritoneal macrophages, T
and B lymphocytes, and platelets (16–18). These cells, among
others, are responsible for the elevated levels of such
cytokines as vascular endothelial growth factor-A (VEGF-
A), interleukin (IL)–6, IL–8, IL–10, IL–17A, and tumor necrosis
factor-α (2, 6, 17, 19–21). Moreover, a higher presence of
neutrophil extracellular traps (NETs) has been reported in
EPF in comparison with CPF (22).

MiRNAs have been described to be present in all biofluids,
including PF, because of their role as intercellular communi-
cators in a paracrine way (23–26). They have even been
assessed as predictors of peritoneal metastasis in patients
with gastric cancer, owing to their important role as cancer
dissemination signals (27).

In the present study we aimed to characterize, for the first
time, the miRNA profile in PF from patients with endometri-
osis, its relationship with the altered proangiogenic and
proinflammatory state of the peritoneal microenvironment,
and its potential influence on fertility status.

MATERIALS AND METHODS

Ethics Statement

Written informed consent was obtained from all patients and
control women, and the study was approved by the Ethics
Committee of the Hospital Universitario y Politécnico La Fe,
Valencia, Spain (#2008/0111) and Hospital General Universi-
tario, Valencia, Spain, where patients and controls were re-
cruited (#PBL00093).

Clinical Groups

Extended inclusion and exclusion criteria are provided in the
Supplemental Material, available online.

Endometriosis patients. A total of 126 Caucasian women
with minimal–mild (stages I–II) or moderate–severe endome-
triosis (stages III–IV) (28) were studied. Sterility was observed
in 54% (n = 68 of 126) of the endometriosis group.

Control nonendometriosis group. A total of 45 women
without endometriosis were enrolled in the study. Sterility
was observed in 49% (n = 22 of 45) of the non-endometriosis
group, in which the indication for surgery was diagnostic lap-
aroscopy to examine tubal patency. Control PF from fertile
women (n = 23) was obtained while they were undergoing
laparoscopic tubal sterilization.

The menstrual phase was identified according to sera hor-
monal analysis on the day of surgery and before the induction
of anesthesia. Forty–seven percent of women with endometri-
osis were in the proliferative phase (n = 55), 44% in the secre-
tory phase (n = 55), and 9% in the menstrual phase of the
cycle (n = 12). Whereas 49% of the women without endome-
triosis were in the proliferative phase (n = 22), 42% were in
the secretory phase (n = 19) and 9% in the menstrual phase
of the cycle (n = 4).

Peritoneal Fluid Samples

Blood-contaminated PF samples were excluded. Peritoneal
washings were not performed before collection of PFs, nor
were anticoagulants used. The PF was immediately cleared
of cells and cell debris by centrifugation at 1,500 × g for
30 minutes at 4°C and stored at −80°C until processing.

A total of 126 PF samples from women with endometri-
osis (EPF) (mean age 32.4 years; range, 20–47 years) and 45
PF samples from women without endometriosis (CPF) (mean
age 36.1 years; range, 28–47) were studied.

2
RNA Extraction

Total RNA was extracted from PF samples with the miRNeasy Mini Kit (Qiagen, \#217004) according to the manufacturer’s recommendations, with minor modifications. MS2 RNA (Roche, \#10165948001) and cel-miR-39-3p mimic (Qiagen, \#219610) were spiked-in as carrier and exogenous control, respectively. Quality of RNA for miRNA expression arrays was assessed using the Agilent Bioanalyzer 6000 (Agilent Technologies).

Analysis of miRNA Expression Profiles

MiRNA expression profiles were performed in six PF samples from women with endometriosis (two in each cycle phase) and 6 PF samples from women without endometriosis (two in each cycle phase) paired by age and day of the menstrual cycle. MiRNA expression profiles were performed using GeneChip miRNA 4.0 arrays of the Affymetrix platform according to the manufacturer’s protocol. This array contains 2,578 probes for mature human miRNAs and 1,908 probes for their precursors. Arrays were prepared in the Array Service of our institution (IIS La Fe, Valencia, Spain). Data analysis was performed using Partek Genomic Suite software and normalized using the robust multiarray analysis algorithm. Statistical analysis using Partek Genomic Suite software and normalized using the robust multiarray analysis algorithm. Statistical analysis of variance (ANOVA) allowed us to generate a list of differently expressed miRNAs with \(\pm 1.2 \) fold change (FC) and \(P \) values <.05.

Validation Phase

To corroborate results obtained from the array by real-time quantitative reverse transcription–polymerase chain reaction (qRT-PCR), a validation phase was focused on 9 miRNAs whose targets were implicated in angiogenesis, proteolysis, inflammation, or endometriosis on the basis of previous results from our group (miR-29c-3p, -106b-3p, -130a-3p, -150-5p, -185-5p, -195-5p, -451a, -486-5p, and -1343-5p). Cel-miR-39-3p served as exogenous normalizer. Quantitative RT-PCR was performed using the miCURY LNA Universal RT microRNA PCR kit (Exiqon) using a LightCycler 480 II thermocycler (Roche Applied Science).

Protein Quantification

Levels of vascular endothelial growth factor-A (VEGF-A), thrombospondin-1 (TSP-1), urokinase plasminogen activator (uPA), plasminogen activator inhibitor-1 (PAI-1), matrix metalloproteinase-3 (MMP-3), and tissue inhibitor of metalloproteinases type 1 (TIMP-1) were quantified by commercial ELISAs. Levels of interleukins (IL-6, IL-8, IL-17A), macrophage inflammatory protein 1β (MIP1β), platelet-derived growth factor-α (PDGF-αA), and regulated on activation, normal T cell expressed and secreted (RANTES) were quantified using the MILLIPLEX MAP assay kit (Millipore Canada) in the MILLIPLEX SERVICE from our institution (IIS La Fe, Valencia, Spain). Both techniques were performed according to the manufacturer’s instructions. Extended information about ELISA kits can be found in the Supplemental Material.

Statistical Analysis

All variables were checked for normal distribution by means of the Kolmogorov-Smirnov test. Differences in the studied variables between two groups were analyzed using the unpaired Student \(t \) test and Mann-Whitney \(U \) test, when appropriate. Differences in the studied variables among several groups were analyzed by a one-way ANOVA or Kruskal-Wallis test, when appropriate.

MiRNA data quantified by real-time qRT-PCR are presented as FC relative to women without endometriosis group (CPF = 1). Values are expressed as mean ± SEM.

Levels of significance in correlations between variables were calculated by the bivariate Pearson correlation test. \(P \) values of <.05 (two-tailed) were considered significant. All these tests were performed using the statistical package SPSS release 20 for Windows (IBM).

RESULTS

Analysis According to the Presence of Endometriosis

Characteristic miRNA profile in PF from patients with endometriosis. Profiling of miRNAs was completed in six PF samples from patients (two in each cycle phase) and in PF samples from six control women (two in each cycle phase). Principal component analysis graphically represents similarities and divergences among samples and, when factor “patient” was taken into account, the endometriosis group showed higher dispersion in terms of miRNA content (Fig. 1A). Data were analyzed by ANOVA according to disease status, by which 126 mature miRNAs were found significantly differentially expressed (\(P < .05 \); FC \(\pm 1.2 \)) (78 down-regulated and 48 up-regulated) between endometriosis patients and control women (Supplemental Table 1). The aforementioned 126 miRNAs were represented by a supervised hierarchical clustering demonstrating a different expression pattern between patients’ and controls’ PF (Fig. 1B). To better identify the magnitude of change, a volcano plot was performed representing the FC \([\log_{2}(\text{ratio endometriosis/control})] \) vs. \(P \) value of every mature studied miRNA (Supplemental Fig. 1A).

We next performed an “in silico” study to identify both the predicted and/or validated target genes of those miRNAs differentially expressed, to investigate which of these 126 miRNAs might regulate the expression of the most important factors involved in angiogenesis, proteolysis, and inflammation, and which of them could be implicated in endometriosis. This analysis led us to select nine miRNAs for validation by qRT-PCR in a larger cohort of samples. Among the selected miRNAs, three (miR-106b-3p, -451a, and -486-5p) were significantly up-regulated in EPF, and two miRNAs (miR-29c-3p and -1343-5p) were significantly down-regulated (Supplemental Fig. 1A and Supplemental Table 1). Although no significant differences were observed in miRNA arrays, miR-130a-3p, -150-5p, -185-5p, and -195-5p were also selected for qRT-PCR validation on the basis of previous results from our group (9), which demonstrated their down-regulation in stromal cells from endometrium from patients with endometriosis after being treated with EPF.
Validation of selected miRNAs by qRT-PCR. We detected significantly higher levels of miR-106b-3p, miR-451a, and miR-486-5p in EPF compared with CPF (Fig. 1C). Increased levels of miR-150-5p were also detected, although differences did not reach statistical significance.

Protein levels in EPF compared with CPF. Aiming to explore the inflammatory and angiogenic status of the PF in endometriosis patients, the most relevant proinflammatory and angiogenic proteins were quantified in all samples. As shown in Figure 1D and 1E, IL-6, IL-8, uPA, and TIMP-1 levels were...
significantly up-regulated in EPF. A similar trend was observed for VEGF-A and MMP-3 levels, although without statistical significance.

Analysis According to the Phase of the Menstrual Cycle

Regarding the proportion of studied women within each phase of the menstrual phase, no statistically significant differences were found.

MicroRNA content in EPF and CPF according to the cycle phases. We also analyzed the results from the array according to the cycle phase. Supervised hierarchical cluster (Fig. 2A) represents the relative levels of each statistically different miRNA among menstrual phases (P<.05; FC ±1.2). This graphic algorithm, performed from the miRNA expression levels of all 12 samples, separates cycle phases as independent categories, being the menstrual phases most different from each other. Not only did menstrual phase cluster separately from the others, but CPF and EPF were also classified as independent groups within the menstrual cycle. This trend was not observed in samples from other menstrual phases (Fig. 2A). Vulcano plots comparing the levels of all assessed miRNAs between EPF and CPF in each phase of the menstrual cycle (Supplemental Fig. 1B–1D) indicated a higher number of miRNAs deregulated in the menstrual and secretory phases than in the proliferative phase.
Validation of miRNA levels in EPF and CPF according to the cycle phases. No significant differences were observed in CPF miRNA levels through any cycle phase. However, in the menstrual phase, EPF presented significantly higher levels of miR-106b-3p, -130a-3p, -150-5p, -451a, and -486-5p compared with the secretory and proliferative phases. Endometrial PF miR-29c-3p, -185-5p, and -195-5p levels were significantly up-regulated in the menstrual phase in comparison with the secretory phase. Additionally, EPF levels of miR-486-5p in the menstrual phase were significantly higher than levels in CPF (Fig. 2B).

Protein levels according to the cycle phases. Whereas VEGF-A, IL-8, MIP1β, uPA, and PAI-1 were significantly up-regulated during the menstrual phase compared with the proliferative phase in EPF, CPF did not significantly modify their levels through these menstrual phases. Moreover, EPF VEGF-A, uPA, PAI-1, and MMP-3 levels in the menstrual phase were significantly higher in comparison with the secretory phase; in contrast, IL-17A was down-regulated. Finally, when EPF was compared with CPF, the cytokines IL-6, IL-8, and IL-17A were significantly different during the proliferative phase (Fig. 3).

Analysis According to the Endometriosis Severity Stages

Levels of miR-106b-3p, -451a, -486-5p, uPA, PAI-1, TIMP-1, IL-6, and IL-8 were significantly increased in PF from women with moderate–severe endometriosis (stages III–IV) compared with levels in CPF (Supplemental Tables 2 and 3). Moreover, TIMP-1 was also significantly increased in minimal–mild endometriosis (stages I–II) compared with CPF (Supplemental Table 3). Not only were peritoneal levels of IL-6 and IL-8 higher in patients than in controls (Fig. 1D), but their levels were also significantly increased as the disease advanced (Supplemental Table 3). Although it did not reach statistical significance, an important trend to up-regulation with severity of disease was observed for miR-106b-3p and -451a, whose levels increased mainly in the most advanced stage (Supplemental Table 2).

Analysis According to Fertility Status

All the parameters quantified in PF were also evaluated according to fertility status (Fig. 4, Supplemental Fig. 2).

MicroRNAs levels according to fertility status. Levels of miR-106b-3p and miR-486-5p were significantly higher in EPF from sterile patients compared with CPF from sterile control women (Fig. 4A). Moreover, miR-486-5p was significantly higher in EPF from fertile patients compared with CPF from fertile control women. Whereas some of the studied miRNAs (miR-106b-3p, -150-5p, -451a, and -486-5p) did not differ within the control group by their fertility status, some others, namely miR-185-5p and -195-5p, tended to be up-regulated in PF from both sterile groups (control and endometriosis) compared with fertile groups, although without reaching statistical significance; a similar result was observed for miR-150-5p levels in sterile patients (Fig. 4A).

Protein levels according to fertility status. VEGF-A, IL-8, and TIMP-1 levels were significantly increased in both EPF groups (sterile and fertile) compared with CPF from fertile control women. In addition, VEGF-A was also significantly increased in sterile versus the fertile CPF groups (Fig. 4B). When sterile groups were compared, IL-6, IL-8, and TIMP-1 showed significantly higher levels in EPF than in CPF. Interestingly, although PAI-1 was over-expressed in EPF independently of fertility status, only the fertile group was significantly different between EPF and CPF (Fig. 4B).

Correlations Between Evaluated Parameters

No significant correlations were observed between age of women and any of the studied parameters in either the endometriosis or the control group.

The biggest differences between EPF and CPF were observed in levels of miR-451a and -486-5p; moreover, these miRNAs correlated significantly with RANTES levels (CPF: \(r = 0.688, P < .001 \) and \(r = 0.581, P = .001 \); EPF: \(r = 0.281, P = .019 \) and \(r = 0.282, P = .022 \), respectively). However, miR-451a and -486-5p levels only correlated significantly with MMP-3 in EPF (\(r = 0.440, P = .009 \) and \(r = 0.550, P = .001 \), respectively). Finally, miR-486-5p levels were significantly correlated with uPA in EPF but not in CPF (\(r = 0.374, P = .015 \) and \(r = -0.034, P = .874 \)).

Although without reaching statistical significance, miR-150-5p showed an important up-regulation in EPF in comparison with CPF. Moreover, as occurred with miR-451a and -486-5p, miR-150-5p levels significantly correlated with RANTES both in CPF and EPF (CPF: \(r = 0.354, P = .004 \) and \(r = 0.550, P = .001 \); EPF: \(r = 0.440, P = .009 \) and \(r = 0.550, P = .001 \)).

DISCUSSION

In the present study we have described, for the first time, the characteristic miRNA content in PF from women with endometriosis as well as its relationship with the main proangiogenic and proinflammatory factors. Endometrial PF presented 126 mature miRNAs with significantly different levels compared with CPF (78 down-regulated and 48 up-regulated). For the validation phase in a larger cohort of PFs, we selected five miRNAs whose target genes were related to angiogenesis or inflammation (miR-29c-3p, -106b-3p, -150-5p, -451a, -486-5p, and -1343-5p) (9, 15, 29). Moreover, miR-130a-3p, -185-5p, and -195-5p were also selected for the validation phase, because in a previous study by our group (9) we detected that cultured stromal cells from endometrium from patients significantly reduced the expression of these miRNAs in response to EPF. The analysis of PF showed a significantly higher level of miR-106b-3p, -486-5p, -451a, TIMP-1, IL-6, IL-8, and uPA in EPF compared with CPF. Levels of miR-150-5p were also increased, although differences did not reach statistical significance (Fig. 1C).

Regarding miR-451a, Graham’s team has recently published two studies showing increased levels of this miRNA in ovarian endometriomas that correlate with lesion size and with its serum levels (30, 31). Provided that PF is mainly composed...
of blood components (32), and usually up-regulated proteins in serum are proportionally up-regulated in PF (33), our results are in accordance with Graham’s, suggesting an important role for miR-451a as a mediator of inflammation in the peritoneal microenvironment. Furthermore, miR-451a has been characterized as the most abundant miRNA in plasma and the main miRNA within erythrocytes (34, 35). In concordance with the retrograde menstruation theory (5), blood and endometrial fragments migrate during menstruation and are deficiently eliminated by the peritoneal microenvironment in patients with endometriosis, remaining and proliferating; it could be an explanation of the observed enhancement of an erythrocyte-specific miRNA in EPF.

The second most abundant miRNA in plasma is miR-486-5p (35), similar to our findings in EPF (data not shown). In 2013 Rekker et al. (35) reported that this miRNA did not modify its levels through the menstrual cycle in plasma.
FIGURE 4

MicroRNA levels in EPF and CPF, according to fertility status. Data are expressed as mean ± SEM. MicroRNA expression is presented as FC relative to women without endometriosis (CPF = 1). *P < .05; **P < .01 between groups.

from healthy women. Similarly, we have not found differences in miR-486-5p levels in CPF across the menstrual cycle (35). However, our results indicate that miR-486-5p not only is up-regulated in EPF in all three phases compared with CPF, but it also presented different levels in each menstrual phase (Fig. 2). Moreover, miR-486-5p has been defined as an exosomal miRNA with a crucial role in intercellular communication in colorectal cancer (36), which, combined with other miRNAs, could be used as biomarker of disease. Taking these studies into account, our results suggest an interesting role for miR-486-5p as a potential intercellular communicator in endometriosis, which should be closely evaluated in future studies.

In our study, with the exception of only miR-1343-5p, all eight studied miRNAs presented increased levels in EPF in the menstrual phase compared with other phases of the menstrual cycle. Similar findings were observed regarding VEGF-A, IL-8, MIP1β, uPA, PAI-1, and MMP-3 proteins. These findings are in accordance with Sampson’s theory (5), because migrated endometrial fragments in the peritoneal cavity require an increased capacity of implantation and vascularization.

Regarding the revised American Society for Reproductive Medicine stages of the disease, most of the miRNAs (miR-106b-3p, -451a, and -486-5p) and proteins (VEGF-A, uPA, PAI-1, IL-6, IL-8, IL-17A, MIP1β, PDGF-AA, and RANTES) presented higher levels the more advanced the disease, suggesting that the PF might be a potential source of biomarkers (37, 38).

Finally, and taking into consideration the fertility status, whereas the enhancement of miR-106b-3p and -451a levels seemed to be due to endometriosis, miR-185-5p trended to be up-regulated in both fertile groups, suggesting its potential role within endometriosis-related sterility, although additional validations are required. Interestingly, we found VEGF-A levels significantly higher in both sterile groups (EPF and CPF) compared with their corresponding fertile groups. Moreover, EPF from fertile women presented significantly higher levels than CPF from fertile control women. These findings suggest new role of peritoneal VEGF-A not only in endometriosis pathogenesis but also in pregnancy outcome.

In conclusion, we have described, for the first time, a characteristic miRNA profile in PF from patients with endometriosis. Moreover, the validation phase confirmed a significant increase of miR-106b-3p, -451a, and -486-5p in comparison with CPF, independently of fertility status. Interestingly, these miRNAs presented their highest levels in the most advanced stages of the disease, as well as in the menstrual phase in comparison with other phases of the menstrual cycle. In addition, VEGF-A levels, although significantly higher in EPF from fertile women, were significantly up-regulated in both sterile groups (EPF and CPF), suggesting its role as a biomarker for fertility outcome. Summarizing, because of the role of miRNAs as intercellular communicators, these findings may be useful to better understand the peritoneal mechanisms that allow the implantation and survival of endometriotic lesions, although additional experiments are required to validate this hypothesis.

REFERENCES

SUPPLEMENTAL FIGURE 1

Vulcano plots from miRNA arrays performed in EPF and CPF. (A) Vulcano plot representing different expression levels between controls and patients. (B–D) Vulcano plots representing miRNA differently expressed between EPF and CPF in each menstrual phase. Red dots: $P<.05$; blue dots: $P>.05$. Broken lines represent FC ±1.2.

SUPPLEMENTAL FIGURE 2

Protein levels in EPF and CPF, according to fertility status. Data are expressed as mean ± SEM. *P<.05; **P<.01 between groups.